Farmed fur animals harbour viruses with zoonotic spillover potential

  • Lindh, E. et al. Highly pathogenic avian influenza A(H5N1) virus infection on multiple fur farms in the south and central Ostrobothnia regions of Finland, July 2023. Eurosurveillance https://doi.org/10.2807/1560-7917.Es.2023.28.31.2300400 (2023).

  • Enserink, M. Coronavirus rips through Dutch mink farms, triggering culls. Science 368, 1169 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peacock, T. P. & Barclay, W. S. Mink farming poses risks for future viral pandemics. Proc. Natl Acad. Sci. USA 120, e2303408120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waller, C. et al. Japanese encephalitis in Australia—a sentinel case. N. Engl. J. Med. 387, 661–662 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Eledge, M. R., Zita, M. D. & Boehme, K. W. Reovirus: friend and foe. Curr. Clin. Microbiol. Rep. 6, 132–138 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabir, J. S. et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 351, 81–84 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Woolhouse, M. & Gaunt, E. Ecological origins of novel human pathogens. Crit. Rev. Microbiol. 33, 231–242 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Taylor, L. H., Latham, S. M. & Woolhouse, M. E. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B 356, 983–989 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Weingartl, H. M. et al. Genetic and pathobiologic characterization of pandemic H1N1 2009 influenza viruses from a naturally infected swine herd. J. Virol. 84, 2245–2256 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, M. et al. Zoonotic risk assessment among farmed mammals. Cell 186, 2040 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, W. T. et al. Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell 185, 1117–1129 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlasova, A. N. et al. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in east Malaysia. Clin. Infect. Dis. 74, 446–454 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lednicky, J. A. et al. Independent infections of porcine deltacoronavirus among Haitian children. Nature 600, 133–137 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agüero, M. et al. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance https://doi.org/10.2807/1560-7917.Es.2023.28.3.2300001 (2023).

  • Conroy, G. Nipah virus outbreak: what scientists know so far. Nature https://doi.org/10.1038/d41586-023-02967-x (2023).

  • Chua, K. B. et al. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 4, 145–151 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, R. S. et al. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America. Sci. Rep. 7, 7821 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magouras, I. et al. Emerging zoonotic diseases: should we rethink the animal–human interface? Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.582743 (2020).

  • Johnson, C. K. et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc. R. Soc. B 287, 20192736 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiono, T. et al. Virological, pathological, and glycovirological investigations of an Ezo red fox and a tanuki naturally infected with H5N1 high pathogenicity avian influenza viruses in Hokkaido, Japan. Virology 578, 35–44 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rijks, J. M. et al. Highly pathogenic avian influenza A(H5N1) virus in wild red foxes, the Netherlands, 2021. Emerg. Infect. Dis. 27, 2960–2962 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. M. et al. Host traits shape virome composition and virus transmission in wild small mammals. Cell 186, 4662–4675 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, X. T., Kropinski, A. M., Tapscott, B., Weese, J. S. & Turner, P. V. Prevalence of fecal viruses and bacteriophage in Canadian farmed mink (Neovison vison). MicrobiologyOpen 8, e00622 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bodewes, R. et al. Viral metagenomic analysis of feces of wild small carnivores. Virol. J. 11, 89 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Virome comparisons in wild-diseased and healthy captive giant pandas. Microbiome 5, 90 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenollar, F. et al. Mink, SARS-CoV-2, and the human-animal interface. Front. Microbiol. 12, 663815 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, H.-S. et al. Prevalence and genetic features of rabbit hepatitis E virus in Korea. J. Med. Virol. 89, 1995–2002 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Czudai-Matwich, V., Otte, A., Matrosovich, M., Gabriel, G. & Klenk, H. D. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J. Virol. 88, 8735–8742 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Divergent Cryptosporidium species and host-adapted Cryptosporidium canis subtypes in farmed minks, raccoon dogs and foxes in Shandong, China. Front. Cell. Infect. Microbiol. 12, 980917 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Viral metagenomics reveals diverse viruses in the feces samples of raccoon dogs. Front. Vet. Sci. 8, 693564 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lojkić, I. et al. Faecal virome of red foxes from peri-urban areas. Compar. Immunol. Microbiol. Infect. Dis. 45, 10–15 (2016).

    Article 

    Google Scholar
     

  • Tortorici, M. A. et al. Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell 185, 2279–2291 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lednicky, J. A. et al. Isolation of a novel recombinant canine coronavirus from a visitor to Haiti: further evidence of transmission of coronaviruses of zoonotic origin to humans. Clin. Infect. Dis. 75, e1184–e1187 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sah, R., Mohanty, A., Rohilla, R. & Padhi, B. K. A recent outbreak of human H1N2 infection: correspondence. Int. J. Surg. 109, 604–605 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szablewski, C. M. et al. Reported global avian influenza detections among humans and animals during 2013-2022: comprehensive review and analysis of available surveillance data. JMIR Publ. Health Surveill. 9, e46383 (2023).

    Article 

    Google Scholar
     

  • Guillén-Servent, A. & Francis, C. M. A new species of bat of the Hipposideros bicolor group (Chiroptera: Hipposideridae) from Central Laos, with evidence of convergent evolution with Sundaic taxa. Acta Chiropterol. 8, 39–61 (2006).

    Article 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30, 2114–2120 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2023).

  • Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12 (R Foundation for Statistical Computing, 2019).

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casal, P. E. et al. Evidence for homologous recombination in Chikungunya virus. Mol. Phylogenet. Evol. 85, 68–75 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences. American Mathematical Society 17, 57–86 (1986).

  • Hill, V. & Baele, G. Bayesian estimation of past population dynamics in BEAST 1.10 using the Skygrid coalescent model. Mol. Biol. Evol. 36, 2620–2628 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar